Sains Malaysiana 53(11)(2024): 3709-3719
http://doi.org/10.17576/jsm-2024-5311-14
Synthesis and
Characterization of Poly (Ethylene Glycol) Dimethacrylate-Based Bionanocomposites with Hydroxyapatite from Rohu Fish
(Labeo rohita)
Bones
(Sintesis dan Pencirian Bionanokomposit Berasaskan Poli (Etilena Glikol) Dimetakrilat dengan Hidroksiapatit daripada Tulang Ikan Rohu (Labeo rohita))
BUSHRA INAM1, NARGIS JAMILA2, NAEEM KHAN1,*, SAEED AHMAD KHAN3, UMAR NISHAN1, ALEESHA RAUF1, SHAUKAT SHUJAH1, AZHAR UL HAQ ALI
SHAH1, MOHAMED A. IBRAHIM4 & KYONG SU KIM5
1Department of Chemistry, Kohat University of Science
and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
2Department of Chemistry, Shaheed Benazir Bhutto
Women University, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan
3Department of pharmacy, Kohat University of Science
and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
4Department of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
5Department of Food and Nutrition, Chosun University, Gwangju 61452, Republic of Korea
Received: 15
August 2024/Accepted: 18 September 2024
Abstract
Hydroxyapatite (HA) has gained
significant recognition as a bioceramic with
widespread utilization in diverse biomedical fields such orthopedics and
dentistry. The present study was aimed to isolate hydroxyapatite from rohu fish
bones and integrate it into biomaterials with the potential for use in
dentistry. Nanocomposite films were developed by combining hydroxyapatite and irgacure with poly (ethylene
glycol) dimethacrylate (PEGDMA) and characterized by SEM,
DSC, FTIR spectroscopy, and XRD techniques. The SEM study identified HA as
nanospheres with crystal sizes below 30 nm. When incorporated into PEGDMA,
these nanoparticles aggregated, potentially disrupting polymer chain
interactions and affecting the films' mechanical properties. The XRD pattern
obtained from the fish bone subjected to higher temperature calcination exhibited
highly intense and sharp peaks, indicating the removal of the organic portion.
The FTIR results confirmed the disappearance of carbon-to-carbon double bonds
due to the successful free radical polymerization reaction. The high enthalpy
of fusion for PEGDMA and irgacure 2952 (86.1409
kJ/mol) suggested that they required high energy to melt, while their
exothermic crystallization enthalpy (21.35378 kJ/mol) indicated the heat
release upon solidification. Adding hydroxyapatite reduced these enthalpies,
indicating easier melting and solidification, which may aid processing thus
opens new possibilities for biomedical applications, particularly in dentistry.
Keywords: Hydroxyapatite
(HA); irgacure; poly (ethylene glycol) dimethacrylate (PEGDMA); rohu fish (Labeo rohita) bones
Abstrak
Hidroksiapatit (HA) telah mendapat pengiktirafan yang ketara sebagai bioseramik dengan penggunaan meluas dalam pelbagai bidang bioperubatan seperti ortopedik dan pergigian. Kajian ini bertujuan untuk mengasingkan hidroksiapatit daripada tulang ikan rohu dan mengintegrasikannya ke dalam biobahan yang berpotensi untuk digunakan dalam pergigian. Filem nanokomposit telah dibangunkan dengan menggabungkan hidroksiapatit dan irgacur dengan poli (etilena glikol) dimetakrilat (PEGDMA) dan dicirikan oleh teknik SEM, DSC, FTIR dan XRD. Kajian SEM mengenal pasti HA sebagai nanosfera dengan saiz kristal di bawah 30 nm. Apabila digabungkan ke dalam PEGDMA, zarah nano ini terkumpul, berpotensi mengganggu interaksi rantai polimer dan menjejaskan sifat mekanikal filem. Corak XRD yang diperoleh daripada tulang ikan yang tertakluk kepada pengkalsinan suhu yang lebih tinggi menunjukkan puncak yang sangat sengit dan tajam, menunjukkan penyingkiran bahagian organik. Keputusan FTIR mengesahkan kehilangan ikatan berganda karbon-ke-karbon kerana tindak balas pempolimeran radikal bebas yang berjaya. Entalpi pelakuran yang tinggi untuk PEGDMA dan irgacur 2952
(86.1409 kJ/mol) mencadangkan bahawa ia memerlukan tenaga yang tinggi untuk mencairkan, manakala entalpi penghabluran eksotermiknya (21.35378 kJ/mol) menunjukkan pelepasan haba apabila pemejalan. Menambah hidroksiapatit mengurangkan entalpi ini, menunjukkan pencairan dan pemejalan yang lebih mudah, yang boleh membantu pemprosesan sekali gus membuka kemungkinan baharu untuk aplikasi bioperubatan, terutamanya dalam pergigian.
Kata kunci: Hidroksiapatit (HA); irgacur; poli (etilena glikol) dimetakrilat (PEGDMA); tulang ikan rohu (Labeo rohita)
REFERENCES
Appleford, M.R., Oh, S., Oh, N. & Ong, J.L. 2009. In vivo study on hydroxyapatite scaffolds with trabecular architecture for bone repair. Journal of Biomedical Materials Research Part A 89(4): 1019-1027.
Arslan, M.E., Kurt, M.Ş., Aslan, N., Kadi, A., Öner, S., Çobanoğlu, Ş. & Yazici,
A. 2022. Structural, biocompatibility, and antibacterial properties of Ge–DLC
nanocomposite for biomedical applications. Journal of Biomedical Materials
Research Part B: Applied Biomaterials 110(7): 1667-1674.
Barakat, N.A., Sayed, Y.T., Irfan, O.M. & Abdelaty, M.M. 2023. Synthesis of TiO2-incorporated
activated carbon as an effective ion electrosorption material. PLoS ONE 18(3): 82-86.
Brahimi, S., Ressler, A., Boumchedda, K., Hamidouche, M., Kenzour, A., Djafar, R., Antunović, M., Bauer, L., Hvizdoš,
P., & Ivanković, H. 2022. Preparation and
characterization of biocomposites based on chitosan
and biomimetic hydroxyapatite derived from natural phosphate rocks, Materials Chemistry and Physics 276, 125421.
Ge, J., Trujillo, M. & Stansbury, J. 2005. Synthesis and photopolymerization of low
shrinkage methacrylate monomers containing bulky substituent groups. Dental
Materials 21(12): 1163-1169.
Hamada, M., Nagai, T., Kai, N., Tanoue,
Y., Mae, H., Hashimoto, M., Miyoshi, K., Kumagai, H.
& Saeki, K. 1995. Inorganic constituents of bone of fish. Fisheries
Science 61(3): 517-520.
Hench, LL. 1998. Biomaterials: A forecast for the
future. Biomaterials 19(16): 1419-1423.
Hoyer, B., Bernhardt, A., Heinemann, S., Stachel, I., Meyer, M. & Gelinsky,
M. 2012. Biomimetically mineralized salmon collagen scaffolds for application
in bone tissue engineering. Biomacromolecules 13(4): 1059-1066.
Huang, S.M., Liu, S.M., Ko, C.L. & Chen, W.C. 2022. Advances of hydroxyapatite hybrid
organic composite used as drug or protein carriers for biomedical applications:
A review. Polymers 14(5): 976.
Ilagan, B.G. & Amsden, B.G. 2009. Surface modifications of photocrosslinked biodegradable elastomers and their
influence on smooth muscle cell adhesion and proliferation. Acta Biomaterialia5(7): 2429-2440.
Jamila, N., Khan, N., Bibi, N., Waqas, M., Khan, S.N.,
Atlas, A., Amin, F., Khan, F. & Saba, M. 2021. Hg(II)
sensing, catalytic, antioxidant, antimicrobial, and anticancer potential of Garcinia mangostana and α-mangostin mediated silver nanoparticles. Chemosphere 272: 129794.
Jin, L., Jang, G., Lim, H., Zhang, W., Park, S., Jeon, M.
& Kim, W. 2022. Improving the ionic conductivity of PEGDMA-based polymer
electrolytes by reducing the interfacial resistance for LIBs. Polymers 14(17): 3443.
Kattimani, V., Lingamaneni, K.P., Chakravarthi, P.S., Kumar, T.S. & Siddharthan,
A. 2016. Eggshell-derived hydroxyapatite: A new era in bone regeneration. Journal
of Craniofacial Surgery 27(1): 112-117.
Khan, W., Khan, N., Jamila, N., Masood, R., Minhaz, M., Amin, F., Atlas, A. & Nishan, U. 2022.
Antioxidant, antibacterial, and catalytic performance of biosynthesized silver
nanoparticles of Rhus javanica, Rumex hastatus,
and Callistemon viminalis. Saudi Journal of
Biological Sciences 29(2): 894-904.
Kumar, A., Tekriwal, S.,
Rajkumar, B., Gupta, V. & Rastogi, R. 2016. A review on fibre reinforced composite resins. IP Annals of
Prosthodontics and Restorative Dentistry 2(1): 11-16.
Lin-Gibson, S., Bencherif,
S., Cooper, J.A., Wetzel, S.J., Antonucci, J.M., Vogel, B.M. & Washburn,
N.R. 2004. Synthesis and characterization of PEG dimethacrylates and their hydrogels. Biomacromolecules 5(4): 1280-1287.
Liu, Q., de Wijn, J.R., de
Groot, K. & van Blitterswijk, C.A. 1998.
Biomaterials, surface modification of nano-apatite by
grafting organic polymer. Biomaterials 19(11-12): 1067-1072.
Maleki, M., Ghomi, N., Nikfarjam, M., Akbari, E., Sharifi, M.A. & Shahbazi, Y. 2022. Biomedical applications of MXene‐integrated composites: Regenerative medicine,
infection therapy, cancer treatment, and biosensing. Advanced Functional
Materials 32(34): 2203430.
Moureen, A., Waqas, M., Khan, N., Jabeen,
J., Magazzino, C., Jamila, N. & Beyazli, D. 2024. Untapped potential of food waste derived
biochar for the removal of heavy metals from wastewater. Chemosphere 356: 141932.
Nayak, A.K. 2010. Hydroxyapatite synthesis methodologies:
An overview. International Journal of ChemTech Research 2(2): 903-907.
Pramanik, N., Mohapatra, S., Bhargava, P. & Pramanik, P. 2009. Chemical synthesis and characterization
of hydroxyapatite (HAp)-poly (ethylene co vinyl alcohol)(EVA) nanocomposite using a symphonic acid coupling
agent for orthopedic applications. Materials Science and Engineering: C 29(1): 228-236.
Pupilli, F., Ruffini, A., Dapporto,
M., Tavoni, M., Tampieri,
A. & Sprio, S. 2022. Design strategies and
biomimetic approaches for calcium phosphate scaffolds in bone tissue
regeneration. Biomimetics 7(3): 112.
Qiu, X., Chen, L., Hu, J., Sun, J., Hong, Z., Liu, A. &
Jing, X. 2005. Surface-modified hydroxyapatite linked by L-lactic acid oligomer
in the absence of catalyst. Journal of Polymer Science Part A: Polymer
Chemistry 43(21): 51-52.
Raguraman, M. & Rajan, M. 2023. Nanoengineering/technology
for tissue engineering and organ printing. In Emerging Nanotechnologies for
Medical Applications, edited by Ahmad, N. & Packirisamy,
G. Elsevier. pp. 35-54.
Sania, B., Benavente, J., Berg,
R.W., Stibius, K., Larsen, M.S., Bohr, H. & Hélix-Nielsen, C. 2012. Tailoring properties of
biocompatible PEG-DMA hydrogels with UV light. Materials Sciences and
Applications 3(6): 425-431.
Soballe, K. & Overgaard, S. 1996. The current status of hydroyapatite coating of prosthesis. The Journal of Bone & Joint Surgery 78B:
689-691.
Venkatesan, J., Qian, Z.J., Ryu, B., Thomas, N.V.
& Kim, S.K. 2012. Chitosan-amylopectin/hydroxyapatite and
chitosan-chondroitin sulfate/hydroxyapatite composite scaffolds for bone tissue
engineering, International Journal of Biological Macromolecules 51(5):
1033-1042.
Yang, F., Williams, C.G., Wang, D.A., Lee, H. &
Manson, P.N. 2005. The effect of incorporating RGD adhesive peptide in
polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal
cells. Biomaterials 26(30): 5991-5998.
Zhou, Z., Yang, D., Nie, J.,
Ren, Y. & Cui, F. 2009. Injectable poly (ethylene glycol) dimethacrylate-based hydrogels with hydroxyapatite.
Journal of Bioactive and Compatible Polymers 24(5): 405-423.
*Corresponding author; email: naeem@kust.edu.pk