Sains Malaysiana 53(11)(2024): 3709-3719

http://doi.org/10.17576/jsm-2024-5311-14

 

Synthesis and Characterization of Poly (Ethylene Glycol) Dimethacrylate-Based Bionanocomposites with Hydroxyapatite from Rohu Fish (Labeo rohita) Bones

(Sintesis dan Pencirian Bionanokomposit Berasaskan Poli (Etilena Glikol) Dimetakrilat dengan Hidroksiapatit daripada Tulang Ikan Rohu (Labeo rohita))

 

BUSHRA INAM1, NARGIS JAMILA2, NAEEM KHAN1,*, SAEED AHMAD KHAN3, UMAR NISHAN1, ALEESHA RAUF1, SHAUKAT SHUJAH1, AZHAR UL HAQ ALI SHAH1, MOHAMED A. IBRAHIM4 & KYONG SU KIM5

 

1Department of Chemistry, Kohat University of Science and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan

2Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan

3Department of pharmacy, Kohat University of Science and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan

4Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia

5Department of Food and Nutrition, Chosun University, Gwangju 61452, Republic of Korea

 

Received: 15 August 2024/Accepted: 18 September 2024

 

Abstract

Hydroxyapatite (HA) has gained significant recognition as a bioceramic with widespread utilization in diverse biomedical fields such orthopedics and dentistry. The present study was aimed to isolate hydroxyapatite from rohu fish bones and integrate it into biomaterials with the potential for use in dentistry. Nanocomposite films were developed by combining hydroxyapatite and irgacure with poly (ethylene glycol) dimethacrylate (PEGDMA) and characterized by SEM, DSC, FTIR spectroscopy, and XRD techniques. The SEM study identified HA as nanospheres with crystal sizes below 30 nm. When incorporated into PEGDMA, these nanoparticles aggregated, potentially disrupting polymer chain interactions and affecting the films' mechanical properties. The XRD pattern obtained from the fish bone subjected to higher temperature calcination exhibited highly intense and sharp peaks, indicating the removal of the organic portion. The FTIR results confirmed the disappearance of carbon-to-carbon double bonds due to the successful free radical polymerization reaction. The high enthalpy of fusion for PEGDMA and irgacure 2952 (86.1409 kJ/mol) suggested that they required high energy to melt, while their exothermic crystallization enthalpy (21.35378 kJ/mol) indicated the heat release upon solidification. Adding hydroxyapatite reduced these enthalpies, indicating easier melting and solidification, which may aid processing thus opens new possibilities for biomedical applications, particularly in dentistry.

 

Keywords: Hydroxyapatite (HA); irgacure; poly (ethylene glycol) dimethacrylate (PEGDMA); rohu fish (Labeo rohita) bones

 

Abstrak

Hidroksiapatit (HA) telah mendapat pengiktirafan yang ketara sebagai bioseramik dengan penggunaan meluas dalam pelbagai bidang bioperubatan seperti ortopedik dan pergigian. Kajian ini bertujuan untuk mengasingkan hidroksiapatit daripada tulang ikan rohu dan mengintegrasikannya ke dalam biobahan yang berpotensi untuk digunakan dalam pergigian. Filem nanokomposit telah dibangunkan dengan menggabungkan hidroksiapatit dan irgacur dengan poli (etilena glikol) dimetakrilat (PEGDMA) dan dicirikan oleh teknik SEM, DSC, FTIR dan XRD. Kajian SEM mengenal pasti HA sebagai nanosfera dengan saiz kristal di bawah 30 nm. Apabila digabungkan ke dalam PEGDMA, zarah nano ini terkumpul, berpotensi mengganggu interaksi rantai polimer dan menjejaskan sifat mekanikal filem. Corak XRD yang diperoleh daripada tulang ikan yang tertakluk kepada pengkalsinan suhu yang lebih tinggi menunjukkan puncak yang sangat sengit dan tajam, menunjukkan penyingkiran bahagian organik. Keputusan FTIR mengesahkan kehilangan ikatan berganda karbon-ke-karbon kerana tindak balas pempolimeran radikal bebas yang berjaya. Entalpi pelakuran yang tinggi untuk PEGDMA dan irgacur 2952 (86.1409 kJ/mol) mencadangkan bahawa ia memerlukan tenaga yang tinggi untuk mencairkan, manakala entalpi penghabluran eksotermiknya (21.35378 kJ/mol) menunjukkan pelepasan haba apabila pemejalan. Menambah hidroksiapatit mengurangkan entalpi ini, menunjukkan pencairan dan pemejalan yang lebih mudah, yang boleh membantu pemprosesan sekali gus membuka kemungkinan baharu untuk aplikasi bioperubatan, terutamanya dalam pergigian.

 

Kata kunci: Hidroksiapatit (HA); irgacur; poli (etilena glikol) dimetakrilat (PEGDMA); tulang ikan rohu (Labeo rohita)

 

REFERENCES

Appleford, M.R., Oh, S., Oh, N. & Ong, J.L. 2009. In vivo study on hydroxyapatite scaffolds with trabecular architecture for bone repair. Journal of Biomedical Materials Research Part A 89(4): 1019-1027.

Arslan, M.E., Kurt, M.Ş., Aslan, N., Kadi, A., Öner, S., Çobanoğlu, Ş. & Yazici, A. 2022. Structural, biocompatibility, and antibacterial properties of Ge–DLC nanocomposite for biomedical applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials 110(7): 1667-1674.

Barakat, N.A., Sayed, Y.T., Irfan, O.M. & Abdelaty, M.M. 2023. Synthesis of TiO2-incorporated activated carbon as an effective ion electrosorption material. PLoS ONE 18(3): 82-86.

Brahimi, S., Ressler, A., Boumchedda, K., Hamidouche, M., Kenzour, A., Djafar, R., Antunović, M., Bauer, L., Hvizdoš, P., & Ivanković, H. 2022. Preparation and characterization of biocomposites based on chitosan and biomimetic hydroxyapatite derived from natural phosphate rocks, Materials Chemistry and Physics 276, 125421.

Ge, J., Trujillo, M. & Stansbury, J. 2005.  Synthesis and photopolymerization of low shrinkage methacrylate monomers containing bulky substituent groups. Dental Materials 21(12): 1163-1169.

Hamada, M., Nagai, T., Kai, N., Tanoue, Y., Mae, H., Hashimoto, M., Miyoshi, K., Kumagai, H. & Saeki, K. 1995. Inorganic constituents of bone of fish. Fisheries Science 61(3): 517-520.

Hench, LL. 1998. Biomaterials: A forecast for the future. Biomaterials 19(16): 1419-1423.

Hoyer, B., Bernhardt, A., Heinemann, S., Stachel, I., Meyer, M. & Gelinsky, M. 2012. Biomimetically mineralized salmon collagen scaffolds for application in bone tissue engineering. Biomacromolecules 13(4): 1059-1066.

Huang, S.M., Liu, S.M., Ko, C.L. & Chen, W.C.  2022. Advances of hydroxyapatite hybrid organic composite used as drug or protein carriers for biomedical applications: A review. Polymers 14(5): 976.

Ilagan, B.G. & Amsden, B.G. 2009. Surface modifications of photocrosslinked biodegradable elastomers and their influence on smooth muscle cell adhesion and proliferation. Acta Biomaterialia5(7): 2429-2440.

Jamila, N., Khan, N., Bibi, N., Waqas, M., Khan, S.N., Atlas, A., Amin, F., Khan, F. & Saba, M. 2021. Hg(II) sensing, catalytic, antioxidant, antimicrobial, and anticancer potential of Garcinia mangostana and α-mangostin mediated silver nanoparticles. Chemosphere 272: 129794.

Jin, L., Jang, G., Lim, H., Zhang, W., Park, S., Jeon, M. & Kim, W. 2022. Improving the ionic conductivity of PEGDMA-based polymer electrolytes by reducing the interfacial resistance for LIBs. Polymers 14(17): 3443.

Kattimani, V., Lingamaneni, K.P., Chakravarthi, P.S., Kumar, T.S. & Siddharthan, A. 2016. Eggshell-derived hydroxyapatite: A new era in bone regeneration. Journal of Craniofacial Surgery 27(1): 112-117.

Khan, W., Khan, N., Jamila, N., Masood, R., Minhaz, M., Amin, F., Atlas, A. & Nishan, U. 2022. Antioxidant, antibacterial, and catalytic performance of biosynthesized silver nanoparticles of Rhus javanica, Rumex hastatus, and Callistemon viminalis. Saudi Journal of Biological Sciences 29(2): 894-904.

Kumar, A., Tekriwal, S., Rajkumar, B., Gupta, V. & Rastogi, R. 2016. A review on fibre reinforced composite resins. IP Annals of Prosthodontics and Restorative Dentistry 2(1): 11-16.

Lin-Gibson, S., Bencherif, S., Cooper, J.A., Wetzel, S.J., Antonucci, J.M., Vogel, B.M. & Washburn, N.R. 2004. Synthesis and characterization of PEG dimethacrylates and their hydrogels. Biomacromolecules 5(4): 1280-1287.

Liu, Q., de Wijn, J.R., de Groot, K. & van Blitterswijk, C.A. 1998. Biomaterials, surface modification of nano-apatite by grafting organic polymer. Biomaterials 19(11-12): 1067-1072.

Maleki, M., Ghomi, N., Nikfarjam, M., Akbari, E., Sharifi, M.A. & Shahbazi, Y. 2022. Biomedical applications of MXene‐integrated composites: Regenerative medicine, infection therapy, cancer treatment, and biosensing. Advanced Functional Materials 32(34): 2203430.

Moureen, A., Waqas, M., Khan, N., Jabeen, J., Magazzino, C., Jamila, N. & Beyazli, D. 2024. Untapped potential of food waste derived biochar for the removal of heavy metals from wastewater. Chemosphere 356: 141932.

Nayak, A.K. 2010. Hydroxyapatite synthesis methodologies: An overview. International Journal of ChemTech Research 2(2): 903-907.

Pramanik, N., Mohapatra, S., Bhargava, P. & Pramanik, P. 2009. Chemical synthesis and characterization of hydroxyapatite (HAp)-poly (ethylene co vinyl alcohol)(EVA) nanocomposite using a symphonic acid coupling agent for orthopedic applications. Materials Science and Engineering: C 29(1): 228-236.

Pupilli, F., Ruffini, A., Dapporto, M., Tavoni, M., Tampieri, A. & Sprio, S. 2022. Design strategies and biomimetic approaches for calcium phosphate scaffolds in bone tissue regeneration. Biomimetics 7(3): 112.

 Qiu, X., Chen, L., Hu, J., Sun, J., Hong, Z., Liu, A. & Jing, X. 2005. Surface-modified hydroxyapatite linked by L-lactic acid oligomer in the absence of catalyst. Journal of Polymer Science Part A: Polymer Chemistry 43(21): 51-52.

Raguraman, M. & Rajan, M. 2023. Nanoengineering/technology for tissue engineering and organ printing. In Emerging Nanotechnologies for Medical Applications, edited by Ahmad, N. & Packirisamy, G. Elsevier. pp. 35-54.

Sania, B., Benavente, J., Berg, R.W., Stibius, K., Larsen, M.S., Bohr, H. & Hélix-Nielsen, C. 2012. Tailoring properties of biocompatible PEG-DMA hydrogels with UV light. Materials Sciences and Applications 3(6): 425-431. 

Soballe, K. & Overgaard, S. 1996. The current status of hydroyapatite coating of prosthesis. The Journal of Bone & Joint Surgery 78B: 689-691.

Venkatesan, J., Qian, Z.J., Ryu, B., Thomas, N.V. & Kim, S.K. 2012. Chitosan-amylopectin/hydroxyapatite and chitosan-chondroitin sulfate/hydroxyapatite composite scaffolds for bone tissue engineering, International Journal of Biological Macromolecules 51(5): 1033-1042.

Yang, F., Williams, C.G., Wang, D.A., Lee, H. & Manson, P.N. 2005. The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. Biomaterials 26(30): 5991-5998.

Zhou, Z., Yang, D., Nie, J., Ren, Y. & Cui, F. 2009. Injectable poly (ethylene glycol) dimethacrylate-based hydrogels with hydroxyapatite. Journal of Bioactive and Compatible Polymers 24(5): 405-423.

   

*Corresponding author; email: naeem@kust.edu.pk

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next